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Abstract-The temporal and spatial distribution of heat flux within counter-oscillating slugs of fluid, along 
which is maintained a constant axial temperature gradient, is examined. It is found that the resultant axial 
heat flux pulsates at twice the base oscillation frequency and that the time-averaged axial heat flow under 
tuned conditions is orders of magnitude larger than that present in the absence of oscillations. Such thermal 
pumping is produced by the time-dependent interaction of a transverse conduction flux, produced by large 

transverse temperature gradients, with the periodic axial fluid motion. 

1. INTRODUCTION 

IN SEVERAL recent articles [l-3] we have examined the 
characteristics of a novel heat transfer mode in which 
heat is transported from a hot to a cold fluid reservoir 
by means of sinusoidal oscillations of a viscous fluid 
contained within open-ended capillary tubes con- 
necting the reservoirs. In this transfer process (related 
to the process of gas exchange in high frequency pul- 
monary ventilation [4]) there is a periodic conduction 
heat transfer between the fluid core and the boundary- 
layer region of the oscillating flow coupled to a per- 
iodic axial convective heat transport. However, unlike 
existing convective heat transfer methods, this thermal 
pumping technique involves no net convective mass 
transfer [5] and hence should find considerable appli- 
cation in areas where one wishes to remove heat at 
high rates but does not want the accompanying ex- 
change of mass (i.e. cooling of radioactive liquids). 
Also, since devices using this transfer process are 
driven by external oscillations, one can consider 
devices based on the technique as thermal valves ; 
these might find applications in the field of cryogenics. 
Heat transfer rates in excess of those achievable with 
standard heat pipes [6] are readily obtainable by this 
thermal pumping process. The latest experimental 
results using water in capillary tubes have yielded 
effective axial heat conduction rates 1.97 x 10’ times 
those due to axial molecular conduction at the same 
axial temperature gradient [7]. 

It is the purpose of this paper to examine the tem- 
poral and spatial distribution of heat flux in the ther- 
mal pumping process during the various stages of 
the fluid oscillation cycle. This work supplements our 
earlier analytical and experimental studies [l-3] where 
attention was confined to only time-averaged con- 
ditions, so that details of the combined conduction 
and convection heat transfer process were not evident. 
To simplify the calculations we will confine our atten- 

tion to counter-oscillating slug flows bounded by 
outer non-conducting walls. The resultant geometry 
avoids the need to deal with the rather cumbersome 
expressions involving multiple derivatives of Kelvin 
functions, which arise when dealing with problems of 
this kind in cylindrical geometries [2, 81. As will be 
shown, the heat transfer process consists of time- 
dependent transverse conduction coupled to a per- 
iodic axial convective transport. The net effect of this 
cyclic interactive process is to transport large quan- 
tities of heat from the hot to the cold ends of the 
oscillating fluid slugs. This heat flow increases with 
both oscillation frequency and amplitude. The heat 
transfer process is shown to be tunable and under 
optimum conditions can yield transverse temperature 
gradients in excess of lo6 K m-’ during part of the 
cycle. Time averaged axial heat flows in excess of 
lOa W m-* are readily achievable with liquids such 
as water at a frequency of 10 Hz, an axial displace- 
ment of 0.2 m and an axial temperature gradient of 
200 Km-‘. 

2. VELOCITY AND TEMPERATURE 

DISTRIBUTION 

We consider the oscillating flow shown schemati- 
cally in Fig. 1. It consists of two fluid slugs each of 
width a undergoing 180” out-of-phase axial sinu- 
soidal oscillations. The maximum difference in par- 
allel displacement of the two slugs is Ax (termed the 
tidal displacement) and the corresponding anti- 
symmetric velocity profile is 

U(JJ, t) = U. cos wt = Uo[eior]R (1) 

in the range 0 < y < a and the negative of this for 
-a < y < 0. Here w is the angular frequency, y the 
transverse coordinate, t the time and the subscript R 
indicates the real part of the function shown. A con- 
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NOMENCLATURE 

a fluid slug width AX tidal displacement 
c specific heat Y transverse coordinate. 
9(/?, r~) temperature function shown in 

Fig. 2 Greek symbols 

9 transverse dependence of the B frequency parameter, a& 
temperature distribution Y axial temperature gradient, 

G, H, I functions of /I occurring in 0 -(TH-TJL = dT/ax 

k thermal conductivity ? non-dimensional transverse coordinate, 
L fluid slug length (L >> a) via 
Pe P&let number, U,a/K K thermal diffusivity 

e transverse conduction heat flux at y = 0 % effective axial thermal diffusivity 
t time i non-dimensional effective thermal 
T temperature field diffusivity 
TH, T, temperature of hot and cold fluid P fluid density 

reservoir r non-dimensional time, &/a* 

AT temperature difference between r~ = 1 w angular frequency of oscillating fluid. 
and r~ = 0 

u axial velocity Subscripts 

LJ0 maximum axial velocity I imaginary part of the function shown 
X axial coordinate R real part of the function shown. 

stant axial temperature gradient y = - (Tu - T,-)/L is mass transfer is possible between the reservoirs under 
superimposed on the fluid, where TH and Tc are hot the laminar flow conditions assumed to exist in the 
and cold reservoir temperatures maintained at the narrow channel. The thermal conditions imposed on 
large axial distances of x = -L/2 and x = + L/2, the problem are that the normal derivative of tem- 
respectively, with L being the channel length. The perature at y = + a is zero. This can be interpreted to 
fluid exiting the channel at *L/2 is assumed to mean either that the flow is bounded by insulating 
undergo rapid turbulent mixing in the fluid reser- walls or that one is dealing with a periodic array of 
voirs found there. The tidal displacement Ax is always counter-oscillating slug flows of width 2a each [3]. 
assumed smaller than L/2 so that no direct convective Note, that since we are concerned here only with 

, 
X=-LAX Sinwt 

2 
L i3T_ 

5-O 

FIG. 1, Counter-oscillating slug flow geometry. 
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slug type flows, the Womersley number dependence 

involving the ratio of oscillatory inertia to viscous 
forces does not enter into the problem. This simplifies 
the calculations considerably, while at the same time 
retaining the major characteristics of the thermal 
pumping process. It will also be recognized that 
the present flow geometry is unstable to Kelvin- 
Helmholtz type of disturbances. In experiments this 
difficulty could be overcome by replacing the fluid by 
counter-oscillating solid conducting bars insulated at 
y = +a, or by placing a thin, rigid, conducting sheet 
at y = 0 to prevent fluid mixing. 

The temperature distribution within the range 
0 < y < +a is given by the temperature equation 

where q = y/a is the non-dimensional transverse dis- 
tance ; Pe = Uoa/rc = waAxl2lc the P&let number, K 
the thermal diffusivity, r = tK/a* the non-dimensional 
time based on the transverse thermal diffusion time, 
and /I = a@ a measure of the magnitude of the 
thermal diffusion time to the oscillation period. The 
parameter /I is also equal to the product of the 
Womersley number and the square root of the fluid 
Prandtl number and, in this form, appears in a mul- 
tiple time scale analysis used in one of our earlier 
studies [2]. The boundary conditions in the q direction 
appropriate for the geometry considered are 

aT(l’ x’ t, = 0, 
all 

T(0, x, t) = 0. (3) 

An analytic solution of equation (2), subject to bound- 
ary conditions (3) can be found when using the 
approximation 

VU, x, 0 = Y Lx + a&) eiotlR (4) 

first proposed by Chatwin [9] and used in the fluid 
dispersion study of Watson [8] and in two of our own 
earlier investigations [I, 31. The basis for approxi- 
mation (4) is already contained in the physical 
assumptions made by Taylor [lo] in a study of dis- 
persion in steady, laminar pipe flow, and is based on 
the fact that the axial gradient aT/ax is small com- 
pared to the much larger time-dependent transverse 
temperature gradient existing during most of the oscil- 
lation cycle. This means that LJ’T/a*y is much larger 
than a2T/ax2 while the value of aTlax is taken to equal 
the time-averaged value y. With this approximation, 
the temperature equation (2) assumes the simplified 
form 

d2g . 
z - i/Ig = Pe 
drl 

which, in view of boundary conditions (3), has the 
exact solution 

s(v) = ‘84” [l-9(/3, ?)I (6) 

B”T 29:1*-N 

F,(hrl) 

+0.5 

0 

-0.2 

FIw, v J 

-0.5 

0 0.2 0.4 0.6 0.8 1.0 

q = y/a 

FIG. 2. Temperature function 9 (/?, q) for three values of the 
frequency parameter 8. 

where 

= 
[ 

cosh+l-q)cosB(l -q) 

Jz fi 1 
+i sinhL(l-q)sinL(l--q) 

[ fi fi Ii 
cash J? cos B + i sinh B sin B 1 Jzfi $3 

(7) 

Plots of the real part and imaginary part of the func- 
tion 9(/I, q) for three different values of /l are given 
in Fig. 2. The value /I = 1.594 corresponds to the 
optimum tuned condition for the Ilow under con- 
sideration as will be made clear below, while B = 1 

and /I = 3 correspond to low and high frequency con- 
ditions, respectively. 

3. EFFECTIVE AXIAL THERMAL 

CONDUCTIVITY 

To determine the axial flow of heat in the present 
configuration, we equate the total axial conduction 
plus convection heat flux to an effective thermal con- 
ductivity PCJC,~ multiplied by the axial temperature 
gradient y. Here p is the fluid density and c the specific 
heat. Mathematically one has 

(8) 
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which can, with the aid of(l), (4) and (6), be rewritten 
in the convenient form 

a = kr-K) 
~ = - ; 01 [(2x/Ax) cos or 

wAx2 s 

+(1/2)(flR-1)sin2wt+~,cos2wr]dr]. (9) 

In most instances the product of the integral in this 
last expression times wAx2 is much larger than the 
molecular thermal diffusivity K, so that the term K in 
the definition of 1 can in most instances be neglected. 
Note, as first observed by Chatwin [9] in a related 
study, that the non-dimensional effective thermal 
diffusivity 3, is a time-dependent function containing 
terms oscillating at the fundamental driving frequency 
w plus one harmonic term at twice the fundamental 
frequency. If one time averages over one period of the 
fluid oscillation the cos wt term and the sin 2cot term 
average out to zero, but CO? at assumes the value 
of l/2. The resultant time-averaged value of 1 thus 
assumes the finite value 

where the bar indicates the complex conjugate of the 
function shown. An evaluation of this last result yields 

I = [sinh ,,/?/I - sin &/?]/8&3 

x [cosh,/‘@+cos,,‘@]. (11) 

A graph of this function is shown in Fig. 3. We see 

there that the curve of 1 vs b has a single maximum. 
This maximum occurs at p = 1.59394 with a cor- 
responding value of a,, = 0.052153. On either side 
of this maximum there is a steep drop-off in the value 
of i. The asymptotic values of 1 as derived from 
equation (11) are 

a=:[, -&fi’], B<< l (12) 

and 

/I >> 1. (13) 

These formulas indicate that (K,~-- K) is proportional 
to o2 at low /I and proportional to w’j2 at large 8. This 
way of representing the time-averaged axial dispersion 
coefficient clearly shows that, if the oscillation fre- 
quency is fixed, there is a unique value for the width 
a at which a maximum in axial heat flow can be 
expected. This width equals 

u = 1.594&G. (14) 

For the present configuration with a fluid thermal 
diffusivity equal to that of copper, namely, 
K= 1.12x10-4m2s~‘,andafrequencyof10Hz,this 
would imply a width of a = 0.697 x lo-‘m. This value 
at optimum tuning represents conditions where the 
time of transverse heat diffusion and the oscillation 
half period of the flow are approximately equal. Also 

I I I 

0.1 1 10 100 

P=avGiE 

FIG. 3. Effective thermal diffusivity as a function of B. 
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one notes that at the optimum point, the effective temperature difference cannot maintain itself because 

thermal diffusivity is proportional to the product of of conduction losses. 

angular frequency w and the square of the tidal dis- The corresponding conduction heat flux in the 

placement Ax, indicating that one must not only transverse direction during the various phases of the 

choose the right channel width in order to maximize oscillation, can be readily calculated using the stan- 

the axial heat transfer but that one must also make the dard Fourier law. At the interface rl = 0 and at the 
frequency and tidal displacement as large as possible. axial position x = 0, it is found, after some manipu- 

lations, to be 

aT 
Q= -kaJ; ,.=o 

kAx 
{ 

dF_,(A 0) cos ot + dFa(B> 0) sin Wt 
=-y2a dq dr? 

ykPe IG(B)cos[wt+(371/4)]+H(B)sin[wt+(3n/4)] 

=-a\ I(P) 

4. TRANSVERSE AND AXIAL THERMAL FLUX 

To understand better what is happening in this 
thermal pumping process, we next examine the tem- 

poral dependence of both the transverse and axial 
heat flux existing in the fluid. For this purpose we first 
consider the value of the instantaneous temperature 
difference between the interface at to = 1 and PI = 0. 
This value is obtained by substituting equation (6) 
into equation (4) and recognizing that yx represents 
the time-independent temperature at r~ = 0. Explicitly 

one finds 

AT= 1/2yAx{f,(~,l)coswt+[~-,(~,1)-l]sinwt) 

(15) 

with the real and imaginary values of P given by 

equation (7) or Fig. 2. A plot of this result for the three 
representative values /I = 1, 1.594 and 3 are shown in 
Fig. 4. Our choice for these particular values of fi was 
dictated by our time-averaged result which indicates 
that these values correspond, respectively, to a low, a 
tuned, and a high fluid oscillation frequency for a 
fixed value of a. Note that, since y < 0 in the present 
problem, the fluid at 9 = 0 is generally colder than 

that at r) = 1 during the first half of the cycle while it 
is generally hotter during the second half of the cycle. 
Since transverse conduction heat flow moves in a 
direction opposite to the temperature gradient, it is 
then clear (see Fig. 1) that transverse conduction heat 
flow will be in the positive transverse direction during 
most of the period for which the lower fluid slug 
(- 1 < u < 0) is positioned to the right of the upper 
fluid slug. It will be in the negative transverse direction 
when the reverse holds true. The temperature differ- 
ence in the transverse direction is observed to increase 
with increasing b but will not go much above the value 
of -2AT/yAx = 1 which would be expected as the 
oscillating fluid becomes a non-conductor (i.e. as 
/I -+ CXX), The reason that the transverse temperature 
difference becomes small as b decreases toward zero 
is that the oscillation period is then very slow com- 
pared to transverse conduction time, so that a large 

(16) 

where 

and 

G(/?) = 1 --e-2& 

H(P) = -2sinJ$e-$8 

(17) 

(18) 

r(B) = 1+2e-JI~cosJZj?+e-2&~ (19) 

A plot of this transverse conduction heat flux is given 
in Fig. 5 for our three representative values of /I. 
The non-dimensional value of Za&kyAx is seen to be 
positive during the early part of the cycle and nega- 
tive during the later stage, with a general increase 
in value of the heat flux noted as b increases. These 
results are consistent with the instantaneous trans- 
verse temperature gradient existing in the flow. An 
indication of the magnitude of this transverse heat 
flow and corresponding temperature gradient can be 
obtained by considering the special case for water 
where k = 1.4 x lo-’ m2 s-r with y = -200 K m-‘, 
a = 2 x lop4 m, Ax = 10 cm, and at an oscillation 

frequency of 5 Hz. This condition corresponds 
approximately to b = 3 and, according to Fig. 5, 
gives a maximum transverse conduction heat flow of 
8 = -3.2x lo5 W mm2 at wt = 5~/16. The trans- 
verse temperature gradient at q = 0 at this instant is 
1.9 x lo5 K mm ‘, representing a 950-fold increase over 
that existing axially. As long as the flow remains lami- 
nar, there will be no convective heat flux in the trans- 
verse direction. Such laminar conditions are expected 
to hold for most fluids near tuned conditions in view 
of the relatively small values of a required there. The 
very large transverse gradients existing in these flows 
is what makes the large axial heat transfer possible. 

In addition to the transverse conduction heat flow 
there will be an axial convective transport which can 
be expected to be a function of /I, yoAx2, cot and 
also be dependent on the transverse coordinate q. Its 
spatially integrated value is given by equation (9) and 
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FIG. 4. Transverse temperature difference. 

its incremental value at q = 1 is 

- U(1, t)[T(l, x, t)- T(0, x, t)] = - &W 

function of angular frequency w and one of 2~0. This 
leads to curves which repeat themselves twice during 
each oscillation period as clearly indicated in the 
figure. Each of the three curves show that the axial 

x {F,(/?, l)cos2 0.X 
convective heat transfer is pulsating at twice the base 
frequency with more heat transported on average in 

+ i [FR(/?, 1) - 1] sin 2~). 
the positive x direction than in the negative x direc- 

(20) tion. Note that, at the tuned condition of /I = 1.594, 
the time integrated heat flux going to the cold side of 

A plot of this equation is given in Fig. 6 for the same the fluid slugs minus that moving to the hot side is 
three values of /I used earlier. Note that this axial larger than in either the /I = 1 or /I = 3 cases. Also it 
thermal flux is composed of the sum of a periodic is observed that as p gets small, the heat being con- 

0 +Ax/2 0 -Ax12 0 

4 

2 

0 n12 R 37ri2 

FIG. 5. Conduction heat transfer across the interface at rl = 0. 
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FIG. 6. Axial convective heat flux at q = 1. Note the double frequency structure of the axial heat flow 
pulsations. 

vetted in the positive x direction is much larger than 
that going in the reverse direction, however, the over- 
all magnitude of the net positive axial thermal flux 
remains less than that under tuned conditions. 

As a final calculation, we have evaluated the trans- 
verse spatial dependence of the axial convective flux 
at time intervals of it = 7c/4 in the range 0 < q < 1. 
The calculations involve the evaluation of equation 

(20) after replacing the values of 9(/I, 1) found there 
by the values F((B,v) as given in Fig. 2. Results of 
such an evaluation are shown in Fig. 7 for the tuned 
condition at /I = 1.594. Also included there is the 
negative of the spatial transverse temperature vari- 
ation obtainable from equation (15), by again replac- 
ing g (& 1) by P(fl, q). One sees from this last figure 
that the positive axial flux reaches a maximum near 

- TRANSVERSE TEMPERATURE VARIATION AT /!3 = 1.594 

wt = 0 ?l14 ml2 3n/4 7r 5n/4 3~12 7Ill4 

+ AXIAL THERMAL FLUX AT ,9 = 1.594 

FIG. 7. Spatial variation of the axial convection flux and the negative of the transverse temperature variation 
at x/4 intervals of the oscillation cycle. 



1976 U. H. KURZWEG 

the times cot = ~14 and 57~14 and disappears at 
wt = 7c/2 and 3~12. There is only very little negative 
axial flux present and this occurs near cot = 37~14 and 
k/4. 

5. DISCUSSION AND CONCLUDING REMARKS 

We have examined the temporal and spatial dis- 
tribution of thermal flux within a simplified version 
of the thermal pump [.5] and have shown that under 

tuned conditions large time-averaged axial heat flows 

are possible in such a device. The mechanism respon- 
sible for the axial heat transport without a net con- 
vective mass transfer is a cyclical process in which 
transverse heat conduction interacts with axial con- 
vective transport to produce a large pulsating axial 
heat flow which, when time-averaged, is in a direction 
opposite to the imposed axial temperature gradient y. 
The transverse conduction heat flows are large in such 
a device since the transverse temperature gradient can 
become very large and the surface area across which 
heat is conducted is considerably larger than in the 
absence of a tidal displacement. Experimentally one 
can measure the predicted time integrated axial heat 
flux resulting from such an oscillatory heat transfer 
process [l], ‘but would probably have some difficulty 
in trying to time resolve the predicted double periodic 
axial heat flux oscillation given by equation (20). To 
detect such a variation will require a thermocouple 
capable of responding to frequencies in the l&50 
Hz range, and in a way which does not disturb the 
oscillatory flow. 
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DISTRIBUTION SPATIALE ET TEMPORELLE DU FLUX THERMIQUE DANS UN 
ECOULEMENT OSCILLANT SOUMIS A UN GRADIENT DE TEMPERATURE AXIAL 

R&m&-On examine la distribution spatiale et temporelle du flux de chaleur dans des mouvements 
oscillants de fluide avec un gradient axial, constant de tempirature. On trouve que le flux thermique axial 
r6sultant est puli d une frkquence double de celle des oscillations de base et que le flux de chaleur axial 
moyennt sur le temps est superieur de plusieurs ordres de grandeur $ c&i trouvk en l’absence d’oscillations. 
Un tel pompage thermique est produit par l’interaction, d&pendant du temps, d’un flux transversal de 
conduction, produit par des gradients de tempbrature transverses, avec le mouvement ptriodique axial du 

fluide. 
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ZEITLICHE UND RAUMLICHE VERTEILUNG DER WARMESTROMDICHTE IN 
OSZILLIERENDER STROMUNG BE1 EINEM AXIALEN TEMPERATURGRADIENTEN 

Znsammenfassung-Untersucht wird die zeitliche und rlumliche Verteilung der Wlrmestromdichte inner- 
halb gegenschwingender Fliissigkeitspfropfen, entlang derer ein konstanter axialer Temperaturgradient 
aufrechterhalten wird. Die sich ergebende axiale Wlnnestromdichte pulsiert mit der doppelten Frequenz 
wie die Schwingungen. Der zeitliche Mittelwert des axialen Wlrmestroms ist unter bestimmten Bedingungen 
mehrere Gragenordnungen hiiher als beim Fehlen der Schwingungen. Solch ein thermisches Pulsieren 
wird durch eine zeitabhangige Wechselwirkung zwischen querverlaufendem Wlrmestrom durch Leitung, 
verursacht durch groge querverlaufende Temperaturgradienten, und der periodischen axialen Fluid- 

strijmung erzeugt. 

IIPOCTPAHCTBEHHO-BPEMEHHOE PACIIPEAEJIEHHE TEI-IJIOBOFO I-IOTOKA C 
YqETOM OCEBOI-0 TEMIIEPATYPHOF0 IPAAHEHTA IIPM OCI&IJIJIMPYIOIIIEM 

TEYEHHM 

&tIIoTa~n-kkcnenyeTca npocrpancraenuo-epeMeHHoe pacnpenenemie rennoaoro noroxa BHYTPH 

BCTpViHbIX ABH~yLUHXCK A OCUHnnHpyIOUIEiX CHapSIAaX XCEiAKoCTH,BAOnb KOTOPbtX C03AaH TIOCTORHHbIi 

OCeBOfi TeMnepaTypHbIfi rpaAS,eHT. HaiiAeHo, ST0 Pe3ynbTHpylOIUHir OCCBOii TCllnOBOfi IlOTOK IlynbCe- 

PyeT C YaCTOTOii,paBHOfi yABOCHHOfi OCHOBHOfi 'iaCTOTe,a oCpeAHeHHbIfi UO BFMCHB OCCBOi-4 TellnOBOti 

OOTOK UpH TaKWX ycnomRX Ha HCCKOnbKO llOp5IAKOB 6onbme tIOTOKa IIpH OTCyTCTBHH Kone6aHsfi. 

nonodean TennoBaKHaKaqKa 06eCneWiBaeTC~B&wdeHHbIMB3aWMoAei%cTBHeM nonepeworo K~HA~KTHB- 

HOrO noToKa,co3AaHHoro 6onbmfMa nonepewibxMw TeMnepaTypHbIMH rpanweHTam,cnepeonwecKiiM 

OCeBbIM ABWXCHllIX4 YHAKOCTA. 


